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Abstract
We studied the Japan and U.S. patent records of several decades to demonstrate the effect

of collaboration on innovation. We found that statistically inventor teams slightly outperform

solo inventors while company teams perform equally well as solo companies. By tracking

the performance record of individual teams, we found that inventor teams’ performance

generally degrades with more repeat collaborations. Though company teams’ performance

displays strongly bursty behavior, long-term collaboration does not significantly help innova-

tion. To systematically study the effect of repeat collaboration, we defined the repeat collab-

oration number of a team as the average number of collaborations over all the teammate

pairs. We found that mild repeat collaboration improves the performance of Japanese in-

ventor teams and U.S. company teams. Yet, excessive repeat collaboration does not signifi-

cantly help innovation at both the inventor and company levels in both countries. To control

for unobserved heterogeneity, we performed a detailed regression analysis and the results

were consistent with our simple observations. The presented results revealed the intricate

effect of collaboration on innovation, which may also be observed in other creative projects.

Introduction
Collaboration is key to innovation. Indeed, collaboration increases the chances of combina-
tions among ideas, which may result in an innovative and gifted product [1]. For example, an
inventor might combine his or her half idea with another inventor’s half idea to realize a whole
innovative one. Moreover, collaboration can speed up the delivery of innovations [2], which
may involve the parallel validation of initial conceptions and the series implementation of final
ideas. Since speed is the last great competitive advantage to innovations, the speed-up gained
through collaboration could be a crucial determinant in creative enterprises. While collabora-
tion has been considered as a central theme to innovation, how the effect of collaboration on
innovation changes with time has not been quantitatively studied in a systematic fashion.

Previous studies found that repeat collaborations usually underperform in creative projects,
e.g., scientific research [3, 4], consulting practice [5], and entertainment performances [3, 6, 7,
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8]. Those interesting results were explained by the suppression of “creative abrasion” (a se-
quence of processes constituted by idea generation, disclosure/advocacy, and convergence),
which is key to creative project performance [9]. Despite those intriguing results on the nega-
tive relationship between repeat collaboration and team performance, the effect of repeat col-
laboration on innovation has not been fully understood.

Here we studied the Japan and U.S. patent records of several decades [10, 11, 12] to demon-
strate the effect of collaboration on innovation. Patent records are valuable for this research.
First of all, the purpose of patents is to facilitate and encourage disclosure of innovations into
the public domain for the common good. A typical patent application must meet the relevant
patentability requirements such as novelty and non-obviousness. Hence, patent records are di-
rectly related to the occurrence of innovations over time [13, 14, 15]. We can track and analyze
the innovation activity over long periods of time by mining patent records, in line with the cur-
rent quantitative trend of computational social science [16]. Comparing with patent records,
team performance in scientific research, consulting practice, and entertainment industries,
cannot always be directly related to innovation. For example, scientific findings, especially
from fundamental sciences, do not always lead to more effective products or technologies that
are readily available to markets and society. Second, there are two levels of collaboration in pat-
ent records. A patent application can be filed by multiple inventors and/or multiple companies.
Though different companies could have different climates and unique tacit knowledge [17], to
speed up innovations companies capitalize on other companies’ knowledge more and more
[18, 19, 20]. Commensurate with this trend, the number of joint patents applied for by multiple
companies keeps increasing those days [21]. Since innovations can be driven by the collabora-
tions of inventors and/or companies, it would be very interesting to study the effect of collabo-
ration on innovation at both the inventor and company levels.

Collaboration Networks
A patent can be requested by filing an application. The applicants of a patent are inventors or
companies. In this work, we analyzed the Japan and U.S. patent records (accessible from http://
www.iip.or.jp/e/ and http://www.nber.org/, respectively), which cover different years and dif-
ferent number of inventors and companies.

We first studied the structure of the underlying collaboration networks to check the similar-
ity and/or difference of the two patent records. We constructed a collaboration network of in-
ventors (or companies) by drawing a link between two nodes i and j if they collaborated at least
once, i.e., they filed at least one patent application together (see Fig. 1), where nodes are inven-
tors (or companies) and links represent the collaborations between inventors (or companies)
[22]. The total number of collaborators of node i is called its degree, denoted as ki. The total
times of collaborations between nodes i and j is defined to be the weight of the link (i, j), de-
noted as wl(i, j). The total number of patents that node i has contributed is defined to be its
weight, denoted as wn(i).

Table 1 shows the basic information of the Japan and U.S. patent records and the con-
structed collaboration networks. We found that at the inventor level both Japan and U.S. col-
laboration networks show very high clustering coefficient C and high assortative degree
correlations r. High C indicates that inventors tend to cluster together, i.e., two collaborators of
an inventor also tend to be collaborators of each other. High rmeans that hub inventors (with
high degree k) tend to collaborate with other hub inventors. At the company level, however,
both Japan and U.S. collaboration networks display very low clustering coefficient (C� 0) and
slightly disassortative degree correlations (r ≲ 0), which are qualitatively different from the in-
ventor collaboration networks.
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Despite the fact that Japan and U.S. collaboration networks cover different years and differ-
ent number of inventors and companies, we found that their degree distributions P(k), node
weight distributions P(wn), link weight distributions P(wl), and component size distributions P
(S) display qualitatively similar features (see S2 Fig. for details). At the company level, we
found the Japan and U.S. collaboration networks display some quantitative differences. For ex-
ample, they have different fractions of isolated nodes, denoted as n0, who never collaborate
with others. We found that n0 = 0.542 for Japan and 0.907 for U.S. Their relative sizes of the
largest connected component, denoted as slc, are also different: slc = 0.364 for Japan and 0.049
for U.S. The large value of slc in the Japan company collaboration network indicates that Japa-
nese companies are highly connected through collaboration. In contrast, the U.S. companies
are not well connected in innovative teams. This structure difference is also reflected by their
mean degrees (hki = 1.941 for Japan and 0.214 for U.S.). The high value of n0, low values of slc
and hki for the U.S. company collaboration network implies that company collaborations in in-
novations are not very popular in U.S. Note that according to both the U.S. patent laws (35 U.
S.C. 262) and Japanese patent law (Article 73), a company cannot sell or license a jointly ap-
plied patent without the consent of others. Yet, Japanese companies seems to be more open to
collaborate on patents than companies of the U.S.

Collaboration and Innovation

Effect of Team Size
We first illustrated the effect of team size on innovation. Previous studies have shown that in-
ventor teams typically produce more successful patents than solo inventors do [25, 26]. Yet, it
is still unknown whether company teams will also outperform solo companies. We denoted the
number of inventors or companies listed in a patent record asm. An inventor or company
team is defined as having more than one listed inventor or company in a patent record (i.e.,
m� 2). To quantify the innovation performance of inventors and companies, we define the
impact (I) of a patent to be the number of citations of that patent (with self-citations removed)
normalized by the average number of citations of patents granted in the same year [27, 11]. We

Fig 1. Patent records and the associated collaboration networks. (a) Patent records contain collaborations at both the inventor and company levels. (b)
By drawing a undirected link between nodes i and j if they filed a patent application at least once, we can construct the collaboration networks of inventors (or
companies). The total times of collaborations between nodes i and j over the whole patent record is defined to be the weight of the link (i, j) (shown in black).
The total number of collaborators of nodes i over the whole patent record is defined to be the weight of the node i (shown in pink). (c) The inventors (or
companies) listed in each patent record forms a clique. For each patent, we calculated its repeat collaboration number (Rl) of its inventors (or companies) by
averaging the accumulated number of collaborations among all the inventor (or company) pairs in the team (shown in black). The productivity of node i in a
patent is defined to be the accumulated number of patents that node i has contributed. We calculated the team productivity (Rn) by averaging the productivity
of all its nodes (shown in pink).

doi:10.1371/journal.pone.0121973.g001
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found that on average inventor teams outperform solo inventors (see Fig. 2a), consistent with
previous result [25]. However, at the company level, teams do not outperform solos at all (see
Fig. 2d). In fact, the average patent impact of the U.S. company teams is even less than that of
U.S. solo companies. To further compare the performance of solos and teams, we calculate the
impact distributions P(I) of patents invented by solos and teams, separately (Fig. 2b, c, e, f). We
found that P(I) displays fat-tailed distributions at both the inventor and company levels, con-
sistent with the result of P(I) calculated for all patent records regardless of whether they were
filed by inventors or companies (see S3 Fig.).

To reveal more information about the effect of team size on innovation, we systematically
studied the patent impact (I) as a function of team size (m) (Fig. 2h, j). We found that the team
performance, as measured by the impact of their patents, behaves differently at the two differ-
ent levels as the team size increases. For inventor teams, the patent impact increases slowly as
team sizem increases (up tom� 15), especially for the Japanese inventor teams, consistent
with the results shown in Fig. 2a. For company teams, however, the patent impact does not in-
crease significantly with increasingm, consistent with the results shown in Fig. 2d. We also no-
ticed that for both inventor and company teams their performance displays large fluctuations
with large team sizem, which could be due to the fact that large teams are rather rare in both
Japan and U.S. patent records (see Fig. 2g, m).

Effect of Team Experience
Repeat Collaboration. Team experience is an important factor that could potentially af-

fect a team’s innovation performance. To demonstrate the effect of team experience on innova-
tion, one can simply track the performance of each team. For a given team, represented by a set
of inventors or companies, we define its exact repetition number (R) as the accumulated num-
ber of patent applications that the whole team has filed together up to the current patent. We
then label teams according to their inventor or company set and track each team’s performance
by plotting the impact of their patents as a function of R (see Fig. 3). We found that extremely
successful patents (indicated by their huge impact) are typically among the first 10 patents of
most inventor teams. For company teams, their patent records display many impact spikes, in-
dicating that individual company teams occasionally perform extremely well.

In the above analysis, we focused on the repeat collaboration of the whole team rather than
its members. Before the whole team work together again, some of its team members may have
already collaborated or worked alone on some other patents. To take this into account and sys-
tematically study the effect of repeat collaboration on innovation using all the patent records of
teams, we denote Rij of a node pair (i, j) in a patent record as the accumulated number of repeat
collaborations between i and j up to that patent. We then define the repeat collaboration num-
ber (Rl) of a team listed in a patent record as the average Rij of all its teammate pairs. Note that
for any given patent, the repeat collaboration number of the inventor team and that of the com-
pany team are generally different. For example, in Fig. 1, for patent-2, Rl = (1+1+2)/3 = 4/3 for
the inventor team while Rl = 1 for the company team.

For each patent in the patent records of teams, we calculated its Rl and found that Rl shows
a broad distribution for both inventor and company teams (see Fig. 4a, c). We then calculated
the average patent impact for teams of similar Rl grouped in logarithmic bins (see Fig. 4b, d).
We found that the effects of repeat collaboration at the inventor and company levels are quali-
tatively different. At the inventor level, we found Japanese teams and U.S. teams also display
quite different behavior. The innovation performance of Japanese inventor teams improves
first as Rl increases, reaches its peak value at Rl = 10, and then generally degrades for Rl > 10
(except the abnormal behavior around Rl � 700, where the patent impacts increases but is still

Revealing the Intricate Effect of Collaboration on Innovation
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Fig 2. Effect of team size on innovation performance. (a, b, c, g, h) Inventors. (d, e, f, i, j) Companies. (a, d) The average impacts of patents filed by solos
and teams. (b, c, e, f) The impact distribution of patents filed by solos (m = 1) and teams (m� 2). (g, i) The team size distribution. (h, j) The patent impact as a
function of team size.

doi:10.1371/journal.pone.0121973.g002
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not significantly higher than that of teams with Rl < 10.) This suggests an ideal timing for Japa-
nese inventors to make new collaborations and hence “rejuvenate” the inventor team. In con-
trast, the performance of U.S. inventor teams degrades almost monotonically as Rl increases,
implying that repeat collaborations weakens the creativity of U.S. inventor teams. At the com-
pany level, Japanese teams show remarkably stable performance for Rl up to 10

3. For U.S. com-
pany teams, their performance slightly improves as Rl increases up to 100 and then degrades
with increasing Rl.

Regression Analysis. Besides the exact repetition number (R) and the repeat collaboration
number (Rl) of a team, there are numerous variables related to team experience, e.g., team age
(denoted as A, the average of the team members’ “age”, i.e., the duration from its first applica-
tion year to the current application year), team productivity (denoted as Rn, the average num-
ber of patents that inventors/companies of a team have already applied), etc (See S1 Table. The
table shows variables related to team experience and other variables). To control for unob-
served heterogeneity, we performed a detailed regression analysis to investigate the effects of
those team experience variables [26].

We introduced a variable for an offset term, i.e., cited_count_average (the average citation
of patents applied in the same year as patent i) such that the response variable (cited_count,
i.e., the number of citations patent i obtained) is closely related to the definition of a patent’s
impact. We also introduced longevity as a control variable. We have checked correlations of
the variables and what regression analyses we can conduct (See S2–S5 Tables). We didn’t use

Fig 3. Track records of individual teams with at least three patent records.Different colors represent different individual teams. (a, b) Inventors. (c, d)
Companies.

doi:10.1371/journal.pone.0121973.g003
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breadth_of_search as a control variable because it strongly correlates with the variable paten-
t_references. All the explanatory variables are the variables closely related to team experience,
i.e., inventor_age (or company_age), team_productivity, etc.

We adopted a generalized linear mixed model [28]

li ¼ exp b0 þ
P
k

bkxki þ log ðcited count average iÞ þ ri

� �
ð1Þ

where λi is the response variable, i.e., its the citation count, β0 is the intercept, βk is the coeffi-
cient for the k-th variable, xki is the k-th variable for patent i, ri denotes random noise following
a gamma distribution.

We found that at the inventor level all the control variables have significant coefficients (See
S6 and S7 Tables) and the results are consistent with previous work [26]. For example, the con-
trol variable team_size is significant and has positive coefficient for both Japanese and U.S. in-
ventors (consistent with the result shown in Fig. 2a). At the company level, some of the control
variables did not have significant coefficients in some data sets (See S8 and S9 Tables). For ex-
amples, the control variable team_size of Japanese companies is not significant (consistent
with the result shown in Fig. 2d); the control variable, longevity of Japanese companies is not
significant either.

One important perspective of the regression analyses is to compare the accountability of
those explanatory variables. To do that, we checked the relative goodness of fit of seven statisti-
cal models including different sets of variables:

Fig 4. Effect of repeat collaboration on innovation performance. (a, b) Inventors. (c, d) Companies. (a, c) Probability distributions of repeat collaboration
number of teams. (b, d) Patent impact as a function of repeat collaboration number.

doi:10.1371/journal.pone.0121973.g004
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(1) base model, which contains the following control variables: {team_size, unassigned, uni-
versity, claims, patent_reference, and longevity}.

(2) base model + team_age (inventor_age or company_age).

(3) base model + team_patents (R).

(4) base model + team_experience_diversity.

(5) base model + team_network_size.

(6) base model + team_productivity (Rn).

(7) base model + repeat_collaboration_number (Rl).

For each statistical model, we calculated its Akaike information criterion (AIC) value. A
model with lower AIC value means that it can fit data better. We exploited the difference of
AIC in models to compare the team experience variables. We found that the performance of
the statistical models with different explanatory variables varies a lot in the sense that their AIC
values heavily depend on the dataset. See bottoms of S6–S9 Tables. Since each dataset has dif-
ferent number of samples, AIC values are largely different between datasets. Yet, we found the
models (2) and (7) display relatively stable performance in the sense that these two models al-
ways have lower AIC values than the base model. This indicates that team_age (A) and repeat_-
collaboration_number (Rl) are better than other explanatory variables in explaining the
data sets.

Moreover, coefficients of A and Rl are negative for all data sets, except that the coefficient of
Rl for U.S. company data set is slightly positive. Note that the small positive coefficient of Rl for
U.S. company data set is consistent with the result shown in Fig. 4d, where we observed that U.
S. company teams’ performance slightly improves as Rl increases up to 100 and then degrades
as Rl increases further.

We have tested the control variables and one of the explanatory variables. It is also possible
to compare these variables simultaneously by using automatic variable selection algorithms,
e.g., the least absolute shrinkage and selection operator (LASSO) method [29]. The results of
LASSO were shown in S10 Table. We acquired the order of variables according to their impor-
tance. The best models have minimummean-squared errors. We found the followings. (1)
There were no deciding explanatory variables because the orders of them were different in
comparing the inventor (or company) datasets. (2) A and Rl had relatively higher priorities
than other explanatory variables. (3) Japanese inventor and company datasets did not con-
verge. However, U.S. inventor and company datasets did converge, and A, Rn, and Rl were in-
cluded in the converged models. Based on these findings, we argued that age (A) and
repeat_collaboration_number (Rl) are certainly related to the impact of patents.

Interplay between Team Age and Repeat Collaboration. The result of regression analysis
prompts us to study the interplay between A and Rl, i.e., the “aging” of team members and the
repeat collaboration among them. Naturally the degradation of team performance with large Rl

could be possibly due to the fact that when teams become older (i.e., A is very large) they are
less innovative. (Actually, A shows similar features to Rl. See S5 Fig. for more information.) To
address this issue and further reveal the intricate effect of collaboration on innovation, we
grouped patents according to quartiles of their team age and then for each group we calculated
the patent impact as a function of Rl (see Fig. 5). Now within each group the change of innova-
tion performance is mainly due to the repeat collaborations quantified by Rl. At the inventor
level, we found that for Japanese inventor teams, regardless of their team age, their perfor-
mance improves first as Rl increases and then degrades. U.S. inventor teams’ performance

Revealing the Intricate Effect of Collaboration on Innovation
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degrades almost monotonically with increasing Rl, regardless of their team age. At the company
level, we found that Japanese company teams of different team age show remarkably stable in-
novation performance as Rl increases. In contrast, U.S. company teams’ performance displays
quite unstable behavior and there is no significant improvement for large Rl, regardless of the
team age.

Discussion
Though for Japanese inventor teams and U.S. company teams a moderate repeat collaboration
slightly improves their innovation performance, we did not find strongly positive relationship
between innovation and collaborations in the long run. Current results actually suggest that
there is a negative relationship between them, especially at the inventor level and for long
term collaboration.

At the inventor level, we observed that Japanese inventor teams have a performance peak
around repeat collaboration number Rl � 10, while for U.S. inventor teams their innovation
performance drops almost monotonically as Rl increases. This result raises an interesting ques-
tion worthy of future pursuit: What causes the drastically different effects of repeat collabora-
tion on the performance of the two countries’ inventor teams? We leave the systematic study of
this question as future work. Here we want to point out the different innovation climates in U.

Fig 5. Effect of repeat collaboration on innovation performance of teams with similar team age. (a, b) Inventors. (c, d) Companies. To separate the
aging effect of a team from that of repeat collaboration among its teammates, we grouped patents according to the quartiles of their team age (A). The A-
range of each group is shown in the legend. For each A-group we further grouped patents according to their repeat collaboration number (Rl) and then
calculated the average patent impact for each Rl-subgroup.

doi:10.1371/journal.pone.0121973.g005
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S. and Japan, which might help us better understand this question. Typically, U.S. workers are
subject to the strong pressure/incentive for the immediate result and light regulations from the
labor market [30], implying that taking time for U.S. inventors to deepen their collaborations is
not a good strategy. In contrast, the labor regulation of Japan is strict and a group of individuals
can create value among them due to cohesive culture [31].

At the company level, we observed that Japanese company teams display remarkably stable
innovation performance while U.S. company teams slightly outperform with repeat collabora-
tions up to some point. This might be related to the fact that in U.S. joint patents of companies
are still not very common, while in Japan joint patents of companies have been prevailing. A
deeper understanding deserves a systematic study in the future. Here we emphasize that the
difference of intercompany relationships in the two countries could be useful to explain the ob-
servation. In Japan there is a unique company ties called “Keiretsu”, i.e., a set of companies
with interlocking business relationships and shareholdings and hence they typically share
human assets and information [32]. Since “Keiretsu” significantly eliminates the difference of
inter-company and inner-company, there may be no margin to deepen their collaborations on
innovation. In contrast, U.S. companies do not have such prior connections and hence they
could build deeper collaborations as they have more joint patents. Consequently, the longitudi-
nal relationship of U.S. companies nurture the trust and therefore better performance [33].
Yet, in the long run, overembeddedness limits the diversity of information and hence stifles the
creation [34]. This may explain the non-monotonic behavior of the innovation performance of
U.S. company teams.

The results presented here provide us a novel perspective about the strategy of improving
innovation performance via controlling the repeat collaboration number at inventor or/and
company levels. For example, our results suggested that repeat collaborations of Japanese com-
panies have very stable performance while repeat collaborations of Japanese inventors have
non-monotonic effect on their performance. Hence, Japanese companies should carefully
monitor the repeat collaboration number (Rl) of their inventor teams (rather than that of their
company teams) and force the inventors to make new collaborations when Rl is close to 10. On
the other hand, U.S. inventor teams’ performance degrades monotonically with more repeat
collaborations while U.S. company teams’ performance have a peak value around Rl � 100.
Hence, U.S. companies should proactively collaborate with other companies but change practi-
tioners of the inter-company collaborations.

We suspect that similar strategy could also be useful for other countries with similar innova-
tion climate. Of course, quantitative studies of patent records from other countries need to be
performed to address this open, yet, interesting question. Particular care should be taken when
we deal with some unsuspected factors such as patent data formatting and non-structured so-
cial factors. In particular, to understand the impact of collaboration on innovations, we need to
consider that different countries have different company climates. For example, Japan and the
U.S. have antithetic company climates. The Japanese government regards large companies as
important. The Japanese government has promoted indirect financial systems after Second
World War and Japanese banks have financed large firms such that they can catch up U.S.
technologies. On the contrary, the U.S. government strongly nurtures start-up companies. For
example, there is a successful policy called the Small Business Innovations Research (SBIR)
that consists of three phases and only successful start-up companies can proceed to the next
phase. The policy is the largest innovation policy in U.S. [35]. Based on the above discussion,
when we apply the systematic approach proposed in this paper to different dataset obtained
from different countries, we need to understand different company climates in those countries
first so that we can better understand the impact of collaboration on innovations. We cannot
blindly adopt strategies from other countries.
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Our systematic approach based on team sizes and repeat collaboration may also be readily
applied to other creative projects, such as scientific research [3, 4], consulting practice [5], and
entertainment performances [6, 3, 7, 8], to further reveal the intricate relation between collabo-
ration and creativity.

Supporting Information
S1 Fig. Characteristics of collaboration networks. (a-g) Inventors. (h-n) Companies. The
collaboration networks of inventors (or companies) can be constructed from the patent rec-
ords. Naturally, those networks are time varying because of the addition of new patents. Hence,
the aggregate statistics of the networks constructed from the whole patent records might not be
good measures of the networks constructed at a particular time point. To make sure that the
collaboration networks have stabilized to some extent, we calculated seven basic graph charac-
teristics (N, E, hki, slc, n0, C, and r) of the collaboration networks constructed from the first p
fraction of the entire patent records under study that are chronologically ordered, with p tuned
from 0.1 to 1.0. We then plot those graph characteristics as functions of p. We found that,
though the networks are growing (the number of nodes N and number of edges E are increas-
ing) and becoming denser (the mean degree hki = 2E/N is increasing), many other graph char-
acteristics, e.g., the fraction of the largest connected component (slc), the fraction of isolated
nodes (n0), the average clustering coefficient (C), and the degree correlation (r), are actually
reaching steady values, especially at the company level.
(TIFF)

S2 Fig. Characteristic distributions of collaboration networks. From left to right: Distribu-
tions of node degree (k), node weight (wn), link weight (wl) and component size (S).We
found that P(k), P(wn), P(wl), and P(S), representing the distribution of node degree, node
weight, link weight, and component size, respectively, are very stable for p> 0.6 at both inven-
tor and company levels. These findings prompt us to compare the stable graph characteristics
of the Japanese and U.S. collaboration networks. Surprisingly, we find that those networks
show strikingly similar topological features, despite the fact that they cover different years and
different number of inventors or companies.
(TIFF)

S3 Fig. Impact distributions of patents. Due to the logarithmic scale, the fraction of patents
with zero impact value (P(I = 0)) is not shown: P(I = 0) = 0.844 for Japan patents and 0.271
for U.S. patents. To quantify the innovation performance of inventors and companies, we
need to value the impact of patents they filed. The most commonly used impact measure is the
number of citations, which has been verified to be a good indicator of a patent’s impact [27].
Citations were also used to value the performance of other types of creative projects, e.g., scien-
tific papers [25]. To take into account the fact that older patents have a higher chance of being
cited, we normalize the number of citations by the average number of citations of patents
granted in the same year [11]. We also removed all self-citations to avoid any bias [36]. Hereaf-
ter, the impact of patents, denoted as I, is defined to be the normalized number of citations. We
found both Japanese and U.S. patents show highly heterogeneous impact distributions, imply-
ing that most patents have very low impact and only a few patents have huge impact. This
might be due to the fact that in U.S. patent applicants have legal duty to cite any prior related
patents, while in Japan applicants did not have such legal duty before 2002. Though the patent
law in Japan was revised in 2002 to introduce the disclosure duty, we think the effect is rather
small on the patent record studied in this work, because 86.7% patent citations occurred before
2002. Moreover, the impact values of Japanese patents have more broader distribution than

Revealing the Intricate Effect of Collaboration on Innovation

PLOS ONE | DOI:10.1371/journal.pone.0121973 March 23, 2015 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121973.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121973.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121973.s003


that of U.S. patents. These results indicate that Japanese patents have higher disparity in impact
values than U.S. patents.
(TIFF)

S4 Fig. Effects of team productivity on patent impact. (a, b) Inventors. (c, d) Companies.
(a, c) Probability distribution of team productivity. (b, d) Patent impact as a function of
team productivity. To quantify the innovation experience of a node, we defined the productiv-
ity of a node i in a patent record to be the number of patents that node i has already contributed
up to the current patent. We then defined the team productivity, denoted as Rn, of a team as the
average of all its members’ productivity. For example, in main text Fig. 1 the average productiv-
ity of the inventor team in patent-3 is Rn = (1+2+3)/3 = 2. Note that the repeat collaboration
number (Rl) of a team quantifies the accumulated collaboration experience among its team
members, which cannot be deduced from the average productivity of the team (Rn). For each
patent in the patent records, we calculated the productivity of its inventor team and company
team, respectively. We found that at both the inventor and company levels the productivity
shows similar distribution for Japan and U.S. patents (see S4 Fig. a, c). At the inventor level, P
(Rn) shows fat-tail behavior, indicating that many patents are filed by unproductive inventors
and only a few patents are filed by highly productive inventors. In contrast, at the company
level P(Rn) shows an almost uniform distribution for Rn up to 10

4, implying that company
teams of a wide range of productivity contribute equally to innovations. The drastic drop of P
(Rn) as Rn> 104 for both Japanese and U.S. companies suggests a natural upper bound of inno-
vation productivity at the company level. We then calculated the average impact for patents of
similar productivity grouped in logarithmic bins (see S4 Fig. b, d). At the inventor level, Japan
and U.S. patents display quite different behaviors. For Japanese inventors, their innovation per-
formance improves first as Rn increases, reaches its peak value around Rn* 40, and then gen-
erally degrades. In contrast, the performance of U.S. inventors degrades almost monotonically
as Rn increases. At the company level, both Japan and U.S. companies display relatively stable
behavior for productivity Rn up to 10

3. Note that repetitions of joint-application by company
teams are probably conducted by different inventors. The stability of company innovation per-
formance by different inventors are subject to organizational influence. We also observed that
the innovation performance of U.S. companies slightly improves as Rn> 103 until a dramatic
performance degradation as Rn> 104. Since the fraction of patents with Rn> 104 is rather
small (� 0.01%), such a degradation could be due to statistical noise.
(TIFF)

S5 Fig. Effects of team age on patent impact. (a, b) Inventors. (c, d) Companies. (a, c) Prob-
ability distribution of team age. (b, d) Patent impact as a function of team age.We also de-
fined team age, denoted as A, by averaging its team member’s “age”. Here, the “age” of a node i
in a patent record is defined to be the duration from its first application year to the application
year of the current patent. Note that the team age is not necessarily related to collaboration, be-
cause a very old team could be just due to its team members are very old but not very produc-
tive and/or collaborative at all. For each patent in the patent records, we calculated the age of
its inventor team and company team, respectively. At the inventor level, P(A) is very heteroge-
neous, implying that most patents are invented by “young” inventors with small A and only a
few patents are invented by “old” inventors with large A. In contrast, at the company level P(A)
shows two strong peaks: (1) A = 0 for both U.S. and Japan teams; (2) A� 8 for Japan teams or
A� 13 for U.S. teams. We found that Japanese inventor teams and U.S. inventor teams have
roughly the same age distribution (see S5 Fig. a). Yet, U.S. company teams and Japanese com-
pany teams have quite different age distributions (see S5 Fig. c). We then calculated the average
impact for patents of the same age (see S5 Fig. b, d). We found that the team performance
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behaves differently at the two different levels as the team age increases. At the inventor level,
both Japanese and U.S. inventor teams’ performance degrades gradually as team age A in-
creases. Similar trend is observed in Japan company teams. Yet, we found that U.S. company
teams show quite stable performance as A increases. Note that for both inventor and company
teams, their performance displays large fluctuations for teams with very large A, which could
be due to the fact that “old” teams are very rare in both Japan and U.S. patent records (see S5
Fig. a, c).
(TIFF)

S1 Table. Variables for regression analyses.
(TIFF)

S2 Table. Correlation matrix of Japan-inventor.
(TIFF)

S3 Table. Correlation matrix of US-inventor.
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S4 Table. Correlation matrix of Japan-company.
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S5 Table. Correlation matrix of US-company.
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S6 Table. Regression result of Japan-inventor.
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S7 Table. Regression result of US-inventor.
(TIFF)

S8 Table. Regression result of Japan-company.
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S9 Table. Regression result of US-company.
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S10 Table. Result of automatic variable selection by LASSO.
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